SPHOS - A molecule containing ¹H, ¹³C and ³¹P nuclei

SPHOS(2-Dicyclohexylphosphino-2',6'-dimethoxybiphenyl)は、空気中で安定なホスフィン系配位子として広く使用されており、パラジウムなどと一緒にさまざまな触媒反応に用いられている。図1は、800 mMのSPHOSサンプルのCDCl3中の1H NMRスペクトルで、15秒かけてシングルスキャンで測定したものです。

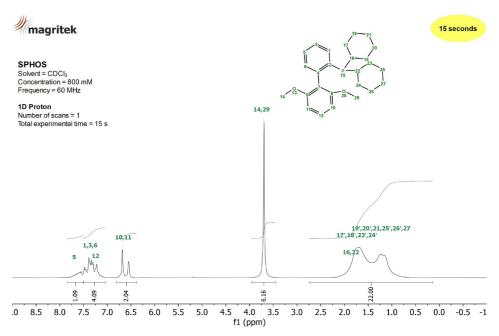


図 1: 1 CDCl3中の800mM SPHOSサンプルのH NMRスペクトルを、Spinsolve 60MHzにてシングルスキャンで測定した結果。

2D COSY

2次元COSY実験では、2次元データセットの対角線上にクロスピークが発生するため、結合した1H原子を識別することができます。図2では、脂肪族のプロトン原子が互いにカップリングしていることがよくわかります(水色)。同様に、10、11、12位の芳香族プロトンも互いに結合しており、それぞれのクロスピーク(オレンジ色)で示されています。

図2: CDCl3中の800 mM SPHOSサンプルの1H 2D COSY実験(Spinsolve 60 MHzにて34分で取得)。

¹³C Spectra

図3は、CDCl₃中の800 mM SPHOSサンプルの¹³C NMRスペクトルを、NOEと¹Hデカップリングを用いて取得したものである(図3 上)。図3 下のスペクトルは、 $110\sim150$ ppmと $20\sim40$ ppmの化学シフト範囲を拡大したものです。¹³Cと³¹Pの結合定数の違いによる多重度を考慮しても、期待されるすべての共鳴が明確に識別されています。Spinsolveの優れたS/N比と分解能を示しています。

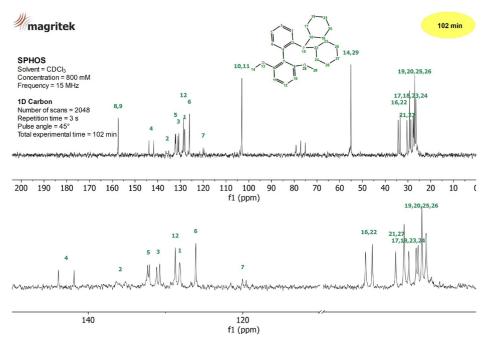


図3: CDCl $_3$ 中の800 mM SPHOSサンプル 13 CNMRスペクトル。Spinsolve 60 MHzでのNOEと1Hデカップリングを用いて 測定。フルスペクトル(上)、110-150ppmおよび20-40ppmへのズーム(下)。

¹³C DEPT Spectra

図4は、CDCl₃中の800 mM SPHOSサンプルの¹³C NMRスペクトルで、NOEとDEPTによる¹Hから¹³Cへの偏光移動と¹Hのデカップリングを用いて取得したものである。NOEを用いた1次元炭素実験(上のスペクトル)では、試料中のすべての¹³C核に感度があるのに対し、DEPT実験では¹Hに直接結合した¹³C核のみが表示されます。炭素原子2、4、7、8、9のピークがDEPTスペクトルに現れないことから、これらは4級炭素に対応するものと思われます。DEPT-90実験では、CH基からの信号のみが得られるが、DEPT-45とDEPT-135では、CH、CH₂、CH₃基の信号が得られる可能性があり、DEPT-135ではCH₂基が負のピークとして現れます。

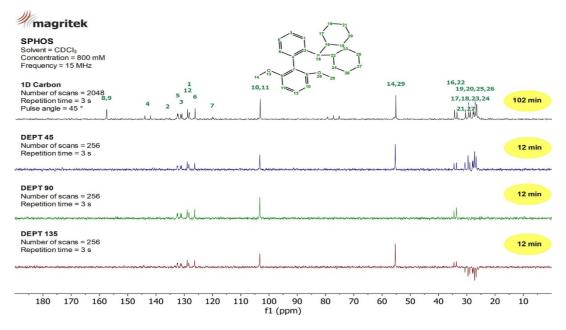


図4: CDCl3中の800 mM SPHOSサンプルのC NMRをSpinsolve 60 MHzでNOE(上) DEPT-45,-90および-135配列を用いて測定。

2D JRES

J-Resolved測定は、J-couplingを直角方向に折り畳むことで各グループに1本の線を生成し、複雑なサンプル混合物から官能基を識別するのに役立ちます。垂直方向にはマルチプレットが生成され、信号と対応するピークの相関を容易にとることができます。

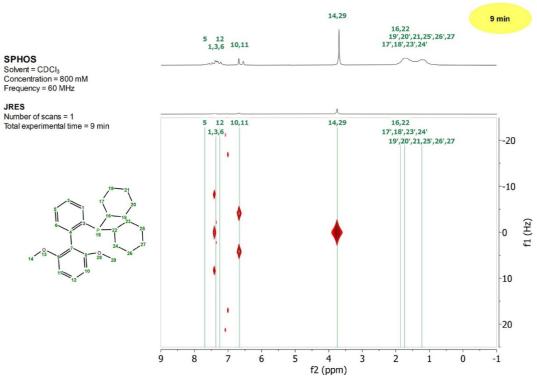


図5: CDCl3中の800 mM SPHOSサンプルの同種核のJ分解スペクトル

³¹P spectrum

CDCl₃中の800 mM SPHOSサンプルの 31 Pスペクトルを図6に示します。15位のリン原子に結合している 31 Pが約-10ppmに1つだけ明確に確認できます。 $^{-10}$ ppm付近に、15位のリン原子の予想される 31 Pが明瞭に確認できます。このスペクトルは、64回のスキャンにて5分で取得しました。また,46 ppm付近に不純物が観測されましたが,これは試料の劣化に起因するものと思われます。

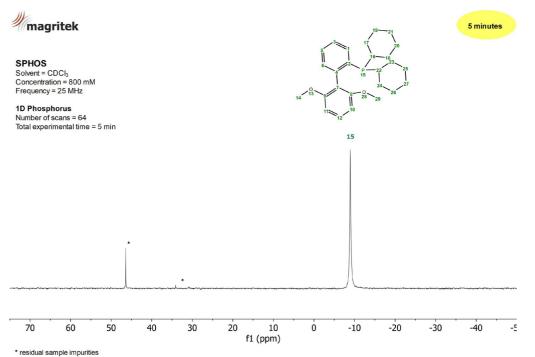


図6: CDCl₃中の800 mM SPHOSサンプルの³¹P NMRスペクトル。Spinsolve 60 MHzで64スキャン、総測定時間5分で測定。

2D 31P-HMBC

図7は、800 mMのSPHOSサンプルのCDCl₃中での³¹P-HMBC(Heteronuclear Multiple Bond Correlation)測定である。ここ では、15位のリン原子に長距離の¹H-³¹Pが観測されている。芳香族プロトン1、3、5、6(緑)と脂肪族プロトン(青)の 両方にカップリングが存在することがよくわかります。

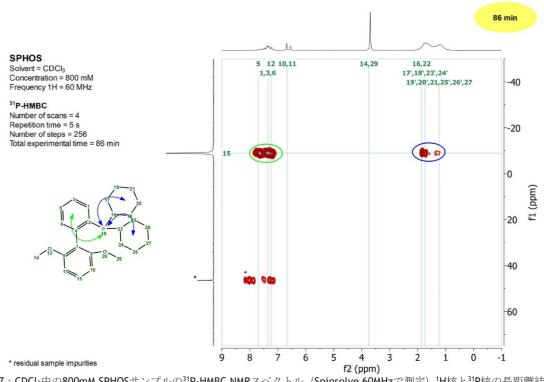


図7: CDCl₃中の800mM SPHOSサンプルの³¹P-HMBC NMRスペクトル (Spinsolve 60MHzで測定) ¹H核と³¹P核の長距離結合。

2D HSQC-ME

HSQCは、 1H と1原子結合した ^{13}C 原子核の相関をとるために広く用いられている強力なシーケンスです。Spinsolveは、この 手法のHSQC-MEが搭載されています。これは、DEPT-135を提供するもので、CH2 基のシグナル(青)と CH3 基のシグナル (赤)を識別するのに有効です。図8は、CDCl3中の800mM SPHOSサンプルのHSQC-MEスペクトルを34分で取得しました。

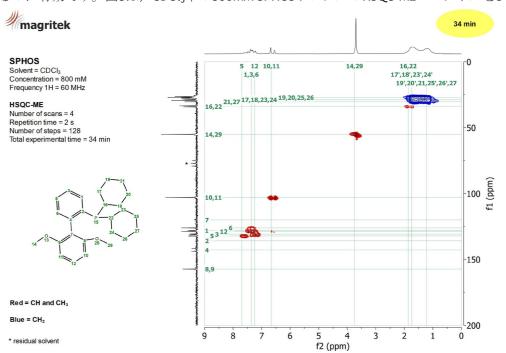


図8: CDCl₃中の800mM SPHOSサンプルのHSQC-MEスペクトルで、¹H (横) と¹³C (縦) のの相関関係

2D HMBC

2つまたは**3**つの結合を介して長距離の¹H-¹³C相関を得るには、HMBC(Heteronuclear Multiple Bond Correlation)測定を用いることができる。図**9**は炭素**10**および**11**と、炭素**4、7、8、9、12**との相関を示している(**4**級炭素との相関)。

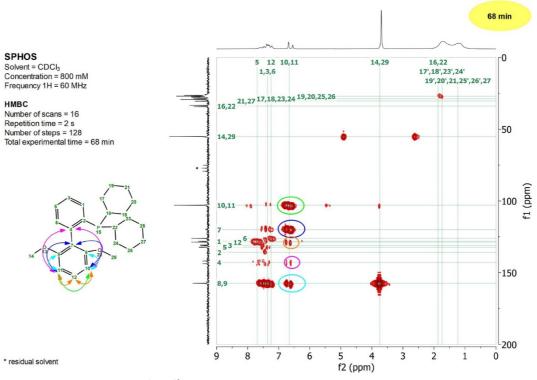
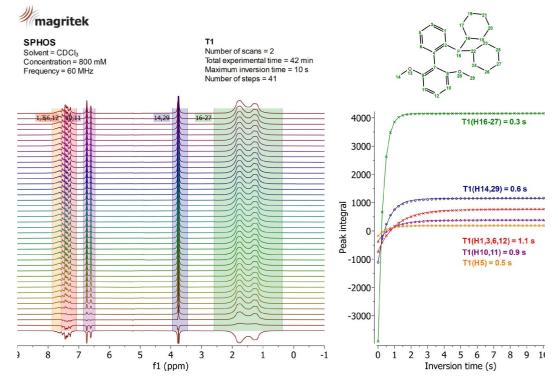
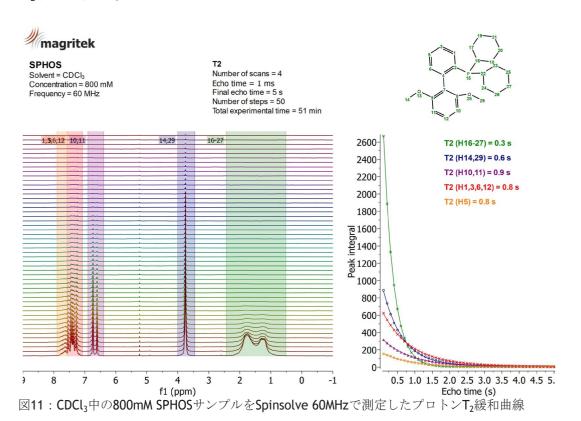


図9: ¹Hと¹³Cの結合を示すCDCl₃中の800mM SPHOSサンプルのHMBCスペクトル

T_1 proton relaxation

この測定では、各化学基の T_1 緩和時間を測定します。図10は,CDCl3中の800 mM SPHOSサンプル中のすべての異なるプロトンの T_1 ビルドアップ曲線を示しています。ビルドアップカーブを単一の指数関数でフィッティングして得られた T_1 値をビルドアップカーブの隣に示しています。Spinsolveの卓上型NMRのS/N比と再現性の高さを示しています。




図10: CDCl₃中の800mM SPHOSサンプルを用いて、Spinsolve 60MHzで行ったプロトンT₁緩和測定。

T₂ proton relaxation

Spinsolve 60

この測定では、横緩和時間 T_2 で緩和させるためにCPMGシーケンスを使用し、最後のエコーの信号のみを取得しています。 完全なデータ取得するためには、CPMGモジュールの期間を長くして、その間に発生するエコーの数を増やして実験を繰り返す必要があります。 T_2 値は,各グループのピーク積分値をCPMGの進化時間の関数としてフィッティングすることで得られます。時間の関数としてフィッティングすることで得られました。図11は $CDCl_3$ 中の800 mM SPHOSサンプル中のすべて異なるプロトンの T_2 減衰曲線です。

